基于AI大模型的工业企业安全管理知识问答系统设计与实现

Design and Implementation of an AI Large Model-Based Industrial Enterprise Safety Management Knowledge Q&A System

  • 摘要: 工业企业安全管理是保障生产安全的核心环节,但传统方法在知识获取、共享与应用中存在效率低、准确性不足等缺陷。本研究设计并实现了一种基于AI大模型的工业企业安全管理知识问答系统,通过构建多维度知识图谱、优化大模型训练策略、设计分层架构系统,并结合检索增强生成(RAG)技术,显著提升了安全知识的智能化应用水平。实际应用案例表明,该系统能够快速响应复杂问题、提高员工安全素养,并有效降低事故发生率。同时,针对模型复杂问题处理能力不足、数据质量缺陷等局限性,提出了动态知识更新、多模态交互优化等改进方向,为工业安全管理的智能化转型提供了理论与实践参考。

     

    Abstract: Industrial enterprise safety management is a core component of ensuring production safety. However, traditional methods suffer from inefficiencies and insufficient accuracy in knowledge acquisition, sharing, and application. This study designs and implements an AI large model-based question-answering system for industrial safety management knowledge. By constructing a multi-dimensional knowledge graph, optimizing large model training strategies, designing a hierarchical system architecture, and integrating Retrieval-Augmented Generation (RAG) technology, the system significantly enhances the intelligent application level of safety knowledge. Practical application cases demonstrate that the system can rapidly respond to complex queries, improve employee safety awareness, and effectively reduce accident rates. Additionally, addressing limitations such as inadequate complex problem-solving capabilities of models and data quality issues, this study proposes improvement directions including dynamic knowledge updating and multimodal interaction optimization, providing theoretical and practical references for the intelligent transformation of industrial safety management.

     

/

返回文章
返回