基于PAD与朴素贝叶斯方法的工作台形态设计

Workbench Form Design Based on PAD Model and Naive Bayes Method

  • 摘要: 为了探索智能教育工作台的形态对用户情感认知的影响,发掘结合情感认知评价的产品形态优化设计方法。首先,基于感性工学理论,以工作台为研究对象,运用形态分析法获取产品形态的项目与类目表,并对产品样本进行编码;然后,利用自我评定量表测量样本的愉悦度(P)-激活度(A)-优势度(D)三维情感模型数据,并利用聚类分析法划分情感认知群组;最后,采用朴素贝叶斯方法建立产品形态的情感认知预测模型。使用穷举法从大量形态布局方案中选出在P、A、D三个情感指标方面表现优秀的方案并验证模型准确度。结果表明,该方法具有良好的合理性与可靠性。基于PAD模型和朴素贝叶斯方法建立产品形态的情感认知预测模型,能够在不依赖大规模数据的情况下较好地预测用户的情感认知反应,帮助设计师分析产品形态元素对情感认知的影响规律,为产品形态布局的优化设计提供有益的理论支撑。

     

    Abstract: To explore the impact of smart education workbench forms on users'affective cognition and develop a product form optimization method integrating affective evaluation, this study first employs Kansei Engineering theory. Using morphological analysis, the workbench form items and categories are deconstructed, and product samples are coded. Subsequently, the SelfAssessment Manikin (SAM) is utilized to measure Pleasure-Arousal-Dominance (PAD) three-dimensional affective data, with cluster analysis applied to identify affective cognitive groups. Finally, a Naive Bayes-based affective cognition prediction model for product forms is established. The exhaustive method selects optimal form layouts excelling across all three PAD dimensions from numerous solutions, and model accuracy is validated. Results demonstrate the rationality and reliability of this approach. The proposed PAD-Naive Bayes affective cognition prediction model can effectively forecast users'affective responses without relying on large-scale datasets, helping designers analyze the influence patterns of form elements on affective cognition and providing theoretical support for optimizing product form layouts.

     

/

返回文章
返回