基于VMD-RSO-SVM 的电梯轴承故障诊断研究

Research on Elevator Bearing Fault Diagnosis Based on VMD-RSO-SVM

  • 摘要: 电梯是城市轨道交通系统的重要组成部分,滚动轴承对电梯的稳定运行起着至关重要的作用。针对滚动轴承振动信号非线性非平稳、难以提取有效特征参数,以及使用支持向量机(SVM)进行故障分类时,惩罚因子和核函数参数会影响分类正确率的问题,本文提出了一种基于变分模态分解(VMD)-鼠群优化算法(RSO)-支持向量机(SVM)的故障诊断方法。该方法首先基于算法,自适应分解滚动轴承的振动信号得到本征模态分量(IMF),计算IMF 的多尺度排列熵的平均值构建特征数据样本,并使用特征数据样本训练SVM 模型。为了提高SVM 分类模型性能,使用RSO 算法对SVM 的输入参数进行寻优,以分类正确率作为算法的适应度函数,构建对应SVM 分类模型,从而实现滚动轴承振动信号的分类。最后,使用凯斯西储大学的滚动轴承数据集建立特征数据样本,验证了VMD-RSO-SVM 方法的有效性。研究结果表明:VMD-RSO-SVM 的分类正确率高达96.67%,相较于VMD-SVM、VMD-PSO-SVM 及VMD-GWO-SVM 分类模型,分类正确率分别提高了

     

    Abstract: Elevators are a critical component of urban rail transit systems, and rolling bearings play a vital role in their stable operation. Addressing the challenges of nonlinear and non-stationary vibration signals in rolling bearings—which hinder the extraction of effective feature parameters—and the impact of penalty factors and kernel function parameters on classification accuracy when using Support Vector Machines (SVM) for fault classification, this paper proposes a fault diagnosis method based on Variational Mode Decomposition (VMD), Rat Swarm Optimizer (RSO), and SVM. The method first adaptively decomposes rolling bearing vibration signals using VMD to obtain Intrinsic Mode Functions (IMFs). The average Multiscale Permutation Entropy (MPE) of the IMFs is calculated to construct feature data samples, which are then used to train the SVM model. To enhance the classification model performance, the RSO algorithm is employed to optimize the input parameters of the SVM, using classification accuracy as the RSO's fitness function to construct the corresponding classification model, thereby achieving classification of rolling bearing vibration signals. Finally, the rolling bearing dataset from Case Western Reserve University (CWRU) is used to establish feature data samples, validating the effectiveness of the method. The results demonstrate that the VMD-RSO-SVM model achieves a classification accuracy of up to 96.67%, outperforming SVM, VMD-SVM, and RSO-SVM models by improvements of 9.17%, 4.17%, and 3.34%, respectively. Additionally, the proposed model exhibits the fastest convergence speed, further verifying its effectiveness.

     

/

返回文章
返回