面向外部扰动的水下机器人智能约束控制方法

Intelligent Constrained Control Method for Underwater Vehicles Subject to External Disturbances

  • 摘要: 本文针对水下机器人在复杂水下环境中所面临的外部扰动和动力学参数不确定性问题,提出了一种智能约束控制方法。首先,对水下机器人的动力学系统进行了建模分析。其次,引入径向基函数(Radial Basis Function,RBF)神经网络,利用其强大的非线性拟合能力,对系统中的非线性动态进行在线拟合,从而有效降低系统的不确定性。进一步地,为了确保轨迹跟踪精度,引入障碍李雅普诺夫函数(Barrier Lyapunov Function,BLF),设计了约束控制器,将轨迹跟踪误差严格约束在预定范围内。最后,在 BlueROV 仿真平台上进行了验证实验,结果表明,所提出的控制方法能够在不同工况下保证水下机器人在复杂环境下的轨迹跟踪精度和系统的稳定性,验证了该方法的有效性。

     

    Abstract: This paper proposes an intelligent constrained control method to address the challenges of external disturbances and uncertain dynamic parameters faced by underwater vehicles operating in complex underwater environments. First, the dynamic system of the underwater vehicle is modeled and analyzed. Then, a Radial Basis Function (RBF) neural network is introduced to leverage its powerful nonlinear approximation capability for online fitting of the system's nonlinear dynamics, thereby effectively reducing system uncertainties. Furthermore, to ensure trajectory tracking accuracy, a Barrier Lyapunov Function (BLF) is incorporated to design a constrained controller, which strictly confines the trajectory tracking error within predefined bounds. Finally, validation experiments conducted on the BlueROV simulation platform demonstrate that the proposed control method guarantees trajectory tracking accuracy and system stability for the underwater vehicle under various operating conditions in complex environments, confirming its effectiveness.

     

/

返回文章
返回